Robustness Analysis for Multistage Adaptive Optimization with Application to Hydrogen Supply Chain Planning in the Netherlands

Justin Starreveld¹ Dick den Hertog¹ Zofia Lukszo² Jaron Davelaar³ Gregor Brandt³ Nort Thijssen³

¹University of Amsterdam

²Delft University of Technology

³Quo Mare

YEEES 31

Outline

1. Introduction

- 2. Problem Description
- 3. Robustness Analysis
- 4. Discussion & Questions

- Major concerns regarding current energy system
 - Environmental
 - Geopolitical
 - Economic
- Hydrogen predicted to play an important role in the future

Promise of "green" Hydrogen

Source: Earthjustice (2021)

Justin Starreveld

$1.\ \mbox{Can}\ \mbox{provide energy for "hard to abate" sectors }$

- $1. \ \mbox{Can}\ \mbox{provide energy for "hard to abate" sectors }$
- 2. Can be transported efficiently at scale

Electricity vs. gas transportation capacity

Source: van Wijk (2017)

Justin Starreveld

- $1.\ \mbox{Can}$ provide energy for "hard to abate" sectors
- 2. Can be transported efficiently at scale
- 3. Can be stored efficiently at scale

Hydrogen storage potential

Source: Van Wijk & Wouters (2021)

Justin Starreveld

The Netherlands predicted to play an important role in Europe

- North sea wind generation and salt cavern storage potential
- Strategic location in existing global oil and gas logistics
 - High volume ports
 - Extensive existing gas infrastructure
 - Transportation gateway to North-Western Europe
- Expertise and technology
 - * Currently Europe's second largest producer of *fossil-based* hydrogen

- Production
 - Best production method(s)?
 - Produce locally or import from other countries?

- Production
 - Best production method(s)?
 - Produce locally or import from other countries?
- Infrastructure
 - Transportation: pipelines, shipping or trucks?
 - Storage: what should the capacity be and where?

- Production
 - Best production method(s)?
 - Produce locally or import from other countries?
- Infrastructure
 - Transportation: pipelines, shipping or trucks?
 - Storage: what should the capacity be and where?
- When should the relevant investments be made?

- Production
 - Best production method(s)?
 - Produce locally or import from other countries?
- Infrastructure
 - Transportation: pipelines, shipping or trucks?
 - Storage: what should the capacity be and where?
- When should the relevant investments be made?
- \Rightarrow Can use mathematical optimization models to help answer these questions!

Techno-Economic Optimization Model

Supply

- Resource availability & cost
- Utility availability & cost

Conversion Infrastructure

- Yields & capacities
- CAPEX & OPEX

Transport Infrastructure

- Capacities
- CAPEX & OPEX

Demand

 Product/service demand & prices

Strategic Input

- Supply & Demand scenarios
- Outlook on Prices & Costs
- Environmental Constraints (CO₂)
- Learning curves
- Other constraints (e.g. space, financial, ..)

Simulation & Optimisation

- Investment over Time analysis
- Objective: Highest Margin or Lowest Cost on NPV basis over given horizon

Credible, Affordable, Robust & Competitive Transition Pathways towards a sustainable future

- Model hydrogen supply chain over future time horizon $T = \{2020, 2021, \dots 2050\}$
- Parameters of such a model are highly uncertain

Example: Natural gas price

- One of the most important parameters in the model
- Forecast was made in 2019

• To properly model these strategic energy planning problems, we often require a large scope and long time horizon

- To properly model these strategic energy planning problems, we often require a large scope and long time horizon
- The parameters of such models are often highly uncertain

- To properly model these strategic energy planning problems, we often require a large scope and long time horizon
- The parameters of such models are often highly uncertain
- However, some uncertainty is revealed over time and our decisions may adapt accordingly

- To properly model these strategic energy planning problems, we often require a large scope and long time horizon
- The parameters of such models are often highly uncertain
- However, some uncertainty is revealed over time and our decisions may adapt accordingly
 - We consider a discrete stage setting

- To properly model these strategic energy planning problems, we often require a large scope and long time horizon
- The parameters of such models are often highly uncertain
- However, some uncertainty is revealed over time and our decisions may adapt accordingly
 - ► We consider a discrete stage setting
 - Multi-stage adaptive optimization under uncertainty
 - Stochastic Programming (Dantzig (1955))
 - Markov Decision Process (Bellman (1957))
 - Robust Optimization (Ben-Tal & Nemirovski (1999))

Multistage adaptive optimization

- Decisions **x**
- Uncertain parameters z

Multistage adaptive optimization

Consider a generic uncertain multistage adaptive optimization problem with K stages:

$$\min_{\mathbf{x}_0 \in \mathbb{R}^{n_0}} f_0(\mathbf{x}_0) + R_1$$
s.t. $\mathbf{x}_0 \in \mathcal{X}_0.$

Here R_k represents the "recourse value" at stage k, defined recursively as follows:

$$R_{k} = \min_{\mathbf{x}_{k} \in \mathbb{R}^{n_{k}}} f_{k}(\mathbf{x}_{k}, \mathbf{z}_{[k]}) + R_{k+1}$$

s.t. $\mathbf{x}_{k} \in \mathcal{X}_{k}(\mathbf{x}_{0}, \dots, \mathbf{x}_{k-1}, \mathbf{z}_{[k]}),$
 \vdots
$$R_{K} = \min_{\mathbf{x}_{K} \in \mathbb{R}^{n_{K}}} f_{K}(\mathbf{x}_{K}, \mathbf{z}_{[K]})$$

s.t. $\mathbf{x}_{K} \in \mathcal{X}_{K}(\mathbf{x}_{0}, \dots, \mathbf{x}_{K-1}, \mathbf{z}_{[K]}).$

...it is interesting to note that the original problem that started my research is still outstanding - namely the problem of planning or scheduling dynamically over time, particularly planning dynamically under uncertainty. If such a problem could be successfully solved it could eventually through better planning contribute to the well-being and stability of the world. - George Dantzig

- 1. Estimate the uncertain parameters $\pmb{\xi}$ by nominal values $\hat{\pmb{\xi}}$
- 2. Solve the following deterministic single-level optimization model:

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x},\hat{\boldsymbol{\xi}})$$

s.t. $\mathbf{x}\in\mathcal{X}(\hat{\boldsymbol{\xi}}),$

where
$$n = \sum_{t=1}^{n} n_k$$
, $f(\mathbf{x}, \hat{\boldsymbol{\xi}}) = \sum_{t=1}^{n} f_k(\mathbf{x}_k, \hat{\boldsymbol{\xi}})$ and $\mathcal{X}(\hat{\boldsymbol{\xi}}) = \bigcap_{k=1}^{n} \mathcal{X}_k(\mathbf{x}_{[k-1]}, \hat{\boldsymbol{\xi}})$.

1. Estimate the uncertain parameters $\pmb{\xi}$ by nominal values $\hat{\pmb{\xi}}$

2. Solve the following deterministic single-level optimization model:

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}, \hat{\boldsymbol{\xi}})$$

s.t. $\mathbf{x}\in\mathcal{X}(\hat{\boldsymbol{\xi}}),$

where
$$n = \sum_{t=1}^{K} n_k, f(\mathbf{x}, \hat{\boldsymbol{\xi}}) = \sum_{t=1}^{K} f_k(\mathbf{x}_k, \hat{\boldsymbol{\xi}}) \text{ and } \mathcal{X}(\hat{\boldsymbol{\xi}}) = \bigcap_{k=1}^{K} \mathcal{X}_k(\mathbf{x}_{[k-1]}, \hat{\boldsymbol{\xi}}).$$

• Reduces the problem complexity significantly!

Standard approach: ignore uncertainty

1. Estimate the uncertain parameters $\pmb{\xi}$ by nominal values $\hat{\pmb{\xi}}$

2. Solve the following deterministic single-level optimization model:

$$egin{array}{l} \min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}, \hat{m{\xi}}) \ {
m s.t.} \ \mathbf{x}\in\mathcal{X}(\hat{m{\xi}}), \end{array}$$

where
$$n = \sum_{t=1}^{K} n_k, f(\mathbf{x}, \hat{\mathbf{\xi}}) = \sum_{t=1}^{K} f_k(\mathbf{x}_k, \hat{\mathbf{\xi}})$$
 and $\mathcal{X}(\hat{\mathbf{\xi}}) = \bigcap_{k=1}^{K} \mathcal{X}_k(\mathbf{x}_{[k-1]}, \hat{\mathbf{\xi}}).$

- Reduces the problem complexity significantly!
- \bullet May lead to a decent "nominal" solution \implies no need to make model more complicated

Standard approach: ignore uncertainty

- 1. Estimate the uncertain parameters $\pmb{\xi}$ by nominal values $\hat{\pmb{\xi}}$
- 2. Solve the following deterministic single-level optimization model:

where
$$n = \sum_{t=1}^{K} n_k$$
, $f(\mathbf{x}, \hat{\boldsymbol{\xi}}) = \sum_{t=1}^{K} f_k(\mathbf{x}_k, \hat{\boldsymbol{\xi}})$ and $\mathcal{X}(\hat{\boldsymbol{\xi}}) = \bigcap_{k=1}^{K} \mathcal{X}_k(\mathbf{x}_{[k-1]}, \hat{\boldsymbol{\xi}})$.

- Reduces the problem complexity significantly!
- May lead to a decent "nominal" solution \implies no need to make model more complicated
 - Would like to know whether this is the case ...

Justin Starreveld

Robustness Analysis

Robustness Analysis

Question we would like to answer:

• How robust is a solution?

Contributions of paper:

- Argue why "robustness analysis" can provide valuable insight
- Highlight flaw in widespread use of sensitivity analysis
- Extend methodology of robustness analysis to multistage adaptive setting
- Demonstrate application to hydrogen supply chain planning in the Netherlands

Consider simple toy problem

- 3 Products $p \in \{A, B, C\}$
 - $\blacktriangleright \text{ Product } C \text{ can be created using } A \text{ or } B$
- 2 Time periods $t \in \{1, 2\}$
- Objective: satisfy demand of C with minimum costs

Parameters

- Need to produce 100 units of *C* (in both time periods)
- Supply costs: product A is cheaper (on average), but more volatile

$$\blacktriangleright \text{ Nominal: } \begin{pmatrix} \overline{c}_A^1 \\ \overline{c}_A^2 \\ \overline{c}_B^1 \\ \overline{c}_B^2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1.05 \\ 1.05 \end{pmatrix}$$

Frue:
$$c_A^1 \sim \mathcal{U}(0.5, 1.5)$$
 and $c_A^2 \sim \mathcal{U}(0.5c_A^1, 1.5c_A^1)$

- Investment costs:
 - Arc capacity increase of 20 units costs 2
 - Process capacity increase of 20 units costs 2

Standard approach (optimize for nominal case) \rightarrow solution

Objective Value = 220

• Is this a good solution? What if the supply cost of A differs from expectation?

• (Saltelli et al., 2004): "The study of how uncertainty in the **output of a model** can be apportioned to different sources of uncertainty in the model input"

- (Saltelli et al., 2004): "The study of how uncertainty in the **output of a model** can be apportioned to different sources of uncertainty in the model input"
- Standard assumptions used in SA:
 - 1. Solutions are fully flexible and able to adapt to changes in model input
 - 2. Solutions are able to adapt with **perfect foresight**

- (Saltelli et al., 2004): "The study of how uncertainty in the **output of a model** can be apportioned to different sources of uncertainty in the model input"
- Standard assumptions used in SA:
 - 1. Solutions are **fully flexible** and able to adapt to changes in model input
 - 2. Solutions are able to adapt with perfect foresight
- Sometimes in real life, irreversible decisions have to be made (under uncertainty)

- (Saltelli et al., 2004): "The study of how uncertainty in the **output of a model** can be apportioned to different sources of uncertainty in the model input"
- Standard assumptions used in SA:
 - 1. Solutions are **fully flexible** and able to adapt to changes in model input
 - 2. Solutions are able to adapt with perfect foresight
- Sometimes in real life, irreversible decisions have to be made (under uncertainty)
 - \implies SA not always realistic

- (Saltelli et al., 2004): "The study of how uncertainty in the **output of a model** can be apportioned to different sources of uncertainty in the model input"
- Standard assumptions used in SA:
 - 1. Solutions are **fully flexible** and able to adapt to changes in model input
 - 2. Solutions are able to adapt with perfect foresight
- Sometimes in real life, irreversible decisions have to be made (under uncertainty)
 - \implies SA not always realistic
 - \implies Can be overly optimistic and lead to incorrect conclusions!

- (Saltelli et al., 2004): "The study of how uncertainty in the **output of a model** can be apportioned to different sources of uncertainty in the model input"
- Standard assumptions used in SA:
 - 1. Solutions are **fully flexible** and able to adapt to changes in model input
 - 2. Solutions are able to adapt with perfect foresight
- Sometimes in real life, irreversible decisions have to be made (under uncertainty)
 - \implies SA not always realistic
 - \implies Can be overly optimistic and lead to incorrect conclusions!
- Robustness analysis relaxes these standard assumptions

Robustness Analysis (RA) in static optimization setting

- Given a fixed solution **x**, what happens if the parameters **z** deviate from the nominal case?
- 1. Will the solution remain feasible?
- 2. How might the objective value differ?

Robustness Analysis (RA) in static optimization setting

Objective Value=220 t = 1 $100 \leqslant 100$ Process A Supply A $100 \leqslant 100$ 100 1.00 Demand C $0 \leqslant 0$ Supply B Process B $0 \leqslant \mathbf{0}$ 0 1.05 t = 2 $100 \leqslant 100 + 0$ Process A Supply A $100 \leqslant 100 + 0$ 100 + 01.00 Demand C $0 \leqslant 0 + 0$ Supply B Process B $0 \leqslant \mathbf{0} + \mathbf{0}$ 0 + 01.05

Justin Starreveld

Recall our setup

Supply costs: product A is cheaper (on average), but more volatile

• Nominal:
$$\begin{pmatrix} \bar{c}_A^1 \\ \bar{c}_A^2 \\ \bar{c}_B^1 \\ \bar{c}_B^2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1.05 \\ 1.05 \end{pmatrix}$$

• True: $c_A^1 \sim \mathcal{U}(0.5, 1.5)$ and $c_A^2 \sim \mathcal{U}(0.5c_A^1, 1.5c_A^1)$

▶ Best case:
$$c_A^1 = 0.5$$
 and $c_A^2 = 0.25$

▶ Worst case:
$$c_A^1 = 1.5$$
 and $c_A^2 = 2.25$

Best case scenario

Objective Value = 88.8

Worst case scenario

Objective Value = 379.3

Justin Starreveld

Evaluated on 1000 randomly generated scenarios

Difference RA and SA (in static setting)

RA assumes the solution is fixed. SA allows the solution to change (with perfect foresight).

	luc	tin	ŝ	+-	rr	01		6
-	us			'Lu	•••	~	-	1

Robustness Analysis

YEEES 31

32 / 42

Robustness Analysis in adaptive setting

- In reality, not all decisions are set in stone
 - ► Not fair to consider all variables fixed
 - Some variables are able to adapt to the scenario at hand

- In reality, not all decisions are set in stone
 - ► Not fair to consider all variables fixed
 - Some variables are able to adapt to the scenario at hand
- Analysis requires additional component: adaptive decision policy (θ)

Example of an adaptive decision policy $\boldsymbol{\theta}$

 $ar{ heta}$: Folding horizon re-optimization using expectations over future

- In stage t, where $1 \le t \le T$, we know $\mathbf{c}_1, \ldots, \mathbf{c}_t$ with certainty and previous decisions $\bar{\mathbf{x}}_1, \ldots, \bar{\mathbf{x}}_{t-1}$ are fixed
- Form expectations over future $\hat{\mathbf{c}}_{t+j} = \mathbb{E}[\mathbf{c}_{t+j} | \mathbf{c}_1, \dots, \mathbf{c}_t], \quad j = 1, \dots, T-t$
- Determine x_t,..., x_T by re-solving model with parameters ĉ = (c₁,..., c_t, ĉ_{t+1},..., ĉ_T) and fixed x

 ₁,...x

 _{t-1}
- Fix $\bar{\mathbf{x}}_t = \mathbf{x}_t$
- $t \leftarrow t+1$

• Recall our setup...

- Recall our setup...
 - **b** Uncertain supply costs \mathbf{c}^1 and \mathbf{c}^2

- Recall our setup...
 - Uncertain supply costs c^1 and c^2
 - **•** Static and adaptive investment variables \mathbf{x}^1 and $\mathbf{x}^2(\theta, \mathbf{c}^1)$
 - Arc capacity
 - Processing capacity

- Recall our setup...
 - Uncertain supply costs c^1 and c^2
 - **•** Static and adaptive investment variables \mathbf{x}^1 and $\mathbf{x}^2(\theta, \mathbf{c}^1)$
 - Arc capacity
 - Processing capacity
 - Adaptive arc flow variables $\mathbf{y}^1(\theta, \mathbf{c}^1)$ and $\mathbf{y}^2(\theta, \mathbf{c}^1, \mathbf{c}^2)$

- Recall our setup...
 - Uncertain supply costs c^1 and c^2
 - **•** Static and adaptive investment variables \mathbf{x}^1 and $\mathbf{x}^2(\theta, \mathbf{c}^1)$
 - Arc capacity
 - Processing capacity
 - Adaptive arc flow variables $\mathbf{y}^1(\theta, \mathbf{c}^1)$ and $\mathbf{y}^2(\theta, \mathbf{c}^1, \mathbf{c}^2)$
 - \implies Three-stage problem

Best case scenario (with adaptive decision policy $\bar{\theta}$)

Expectation $\hat{c}_2 = \mathbb{E}[c_2|c_1 = 0.50] = 0.50 \Rightarrow$ no additional investments, happy to stick with product A Justin Starreveld Robustness Analysis YEEES 31 36/42

"Worst" case scenario (with adaptive decision policy $\bar{\theta}$)

Expectation $\hat{c}_2 = \mathbb{E}[c_2|c_1 = 1.50] = 1.50 \Rightarrow$ decide to make additional investments in product B

Justin Starreveld

Robustness Analysis

37 / 42

YEEES 31

Static vs. Adaptive

(a) Robustness analysis in static setting

(b) Robustness analysis in 3-stage adaptive setting

So is the solution sufficiently robust?

- Up to the modeler to decide
- Dependent on situation
- Various risk measures one might want to evaluate
 - $\blacktriangleright \mathbb{P}(\text{objective value} \leq \text{some threshold})$
 - E(objective value)
 - Worst case objective value
 - ► (Conditonal) Value at Risk

▶ ...

	$\mathbb{P}(cost \geq 210.2)$	$\mathbb{E}(cost)$	Worst case	CVaR (10%)
SA	47%	188.0	220.0	220
RA (static)	49%	210.5	375.3	326.6
RA (adaptive)	49%	204.3	302.2	276.3

- SA too optimistic
- RA (static) too pessimistic
- RA (adaptive) provides most realistic assessment

- 1. While optimization under uncertainty can be difficult, a posteriori evaluation of a given solution is relatively easy
- 2. Robustness analysis can be used to assess whether a solution is "sufficiently robust" to parametric uncertainty
- 3. When modeling an uncertain & adaptive problem setting, our analysis should not be overly optimistic (SA), nor overly pessimistic (static RA)

Thanks for listening! Any questions?

Justin Starreveld

References

- Bellman, R. (1957). A markovian decision process. *Journal of mathematics and mechanics*, 679–684.
- Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. *Operations research letters*, 25(1), 1–13.
- Dantzig, G. B. (1955). Linear programming under uncertainty. *Management science*, 1(3-4), 197–206.
- Earthjustice. (2021). Reclaiming hydrogen for a renewable future. Retrieved from https://earthjustice.org/features/green-hydrogen-renewable-zero-emission
- Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., et al. (2004). Sensitivity analysis in practice: a guide to assessing scientific models. *Chichester, England*.
- van Wijk, A. (2017). *The green hydrogen economy in the northern netherlands*. Noordelijke Innovation Board.
- Van Wijk, A., & Wouters, F. (2021). Hydrogen-the bridge between africa and europe. *Shaping an inclusive energy transition*, 91.