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Motivation behind the research

• Major concerns regarding current energy system

▶ Environmental

▶ Geopolitical

▶ Economic

• Hydrogen predicted to play an important role in the future
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Promise of “green” Hydrogen

Source: Earthjustice (2021)
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Main advantages of Hydrogen

1. Can provide energy for “hard to abate” sectors
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Electricity vs. gas transportation capacity

Source: van Wijk (2017)
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Main advantages of Hydrogen

1. Can provide energy for “hard to abate” sectors

2. Can be transported efficiently at scale

3. Can be stored efficiently at scale
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Hydrogen storage potential

Source: Van Wijk & Wouters (2021)
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The Netherlands predicted to play an important role in Europe

• North sea wind generation and salt cavern storage potential

• Strategic location in existing global oil and gas logistics
▶ High volume ports

▶ Extensive existing gas infrastructure

▶ Transportation gateway to North-Western Europe

• Expertise and technology

∗ Currently Europe’s second largest producer of fossil-based hydrogen
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However, there are plenty of open questions...

• Production
▶ Best production method(s)?

▶ Produce locally or import from other countries?

• Infrastructure
▶ Transportation: pipelines, shipping or trucks?

▶ Storage: what should the capacity be and where?

• When should the relevant investments be made?

⇒ Can use mathematical optimization models to help answer these questions!
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Project partners
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Techno-Economic Optimization Model

• Model hydrogen supply chain over future time horizon T = {2020, 2021, . . . 2050}
• Parameters of such a model are highly uncertain
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Example: Natural gas price

• One of the most important
parameters in the model

• Forecast was made in 2019
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Problem

• To properly model these strategic energy planning problems, we often require a large
scope and long time horizon

• The parameters of such models are often highly uncertain

• However, some uncertainty is revealed over time and our decisions may adapt accordingly

▶ We consider a discrete stage setting

▶ Multi-stage adaptive optimization under uncertainty

Stochastic Programming (Dantzig (1955))

Markov Decision Process (Bellman (1957))

Robust Optimization (Ben-Tal & Nemirovski (1999))
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Multistage adaptive optimization

• Decisions x

• Uncertain parameters z

observation:

decision:
time
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Multistage adaptive optimization

Consider a generic uncertain multistage adaptive optimization problem with K stages:

min
x0∈Rn0

f0(x0) + R1

s.t. x0 ∈ X0.

Here Rk represents the “recourse value” at stage k , defined recursively as follows:

Rk = min
xk∈Rnk

fk(xk , z[k]) + Rk+1

s.t. xk ∈ Xk(x0, . . . , xk−1, z[k]),

...

RK = min
xK∈RnK

fK (xK , z[K ])

s.t. xK ∈ XK (x0, . . . , xK−1, z[K ]).
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Remains an open problem . . .

...it is interesting to note that the original problem that started
my research is still outstanding - namely the problem of planning
or scheduling dynamically over time, particularly planning dynam-
ically under uncertainty. If such a problem could be successfully
solved it could eventually through better planning contribute to the
well-being and stability of the world. - George Dantzig
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Standard approach: ignore uncertainty

1. Estimate the uncertain parameters ξ by nominal values ξ̂

2. Solve the following deterministic single-level optimization model:

min
x∈Rn

f (x, ξ̂)

s.t. x ∈ X (ξ̂),

where n =
K∑
t=1

nk , f (x, ξ̂) =
K∑
t=1

fk(xk , ξ̂) and X (ξ̂) =
K⋂

k=1

Xk(x[k−1], ξ̂).
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• Reduces the problem complexity significantly!

• May lead to a decent “nominal” solution =⇒ no need to make model more complicated

▶ Would like to know whether this is the case . . .
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Robustness Analysis
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Robustness Analysis

Question we would like to answer:

• How robust is a solution?

Contributions of paper:

• Argue why “robustness analysis” can provide valuable insight

• Highlight flaw in widespread use of sensitivity analysis

• Extend methodology of robustness analysis to multistage adaptive setting

• Demonstrate application to hydrogen supply chain planning in the Netherlands

Justin Starreveld Robustness Analysis YEEES 31 21 / 42



Consider simple toy problem

• 3 Products p ∈ {A,B,C}
▶ Product C can be created using A or B

• 2 Time periods t ∈ {1, 2}

• Objective: satisfy demand of C with minimum costs

• 5 Nodes
▶ 2 Supply
▶ 2 Process
▶ 1 Demand

Supply A

Supply B

Demand C

Process A

Process B
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Parameters

• Need to produce 100 units of C (in both time periods)

• Supply costs: product A is cheaper (on average), but more volatile

▶ Nominal:

á
c̄1A
c̄2A
c̄1B
c̄2B

ë
=

á
1

1

1.05

1.05

ë
▶ True: c1A ∼ U(0.5, 1.5) and c2A ∼ U(0.5c1A, 1.5c1A)

• Investment costs:
▶ Arc capacity increase of 20 units costs 2
▶ Process capacity increase of 20 units costs 2
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Standard approach (optimize for nominal case) → solution

Supply A

Demand C

Process A100 ⩽ 100

100

Process B

0

0 ⩽ 0
0 ⩽ 0

100 ⩽ 100
1.00

Supply B

1.05

Supply A

Demand C

Process A100 ⩽ 100 + 0

100 + 0

Process B
0 ⩽ 0 + 0

100 ⩽ 100 + 0
1.00

Supply B

1.05

0 ⩽ 0 + 0

0 + 0

t = 2

t = 1

Objective Value = 220

• Is this a good solution? What if the supply cost of A differs from expectation?
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Sensitivity Analysis (SA)

• (Saltelli et al., 2004): “The study of how uncertainty in the output of a model can be
apportioned to different sources of uncertainty in the model input”

• Standard assumptions used in SA:

1. Solutions are fully flexible and able to adapt to changes in model input

2. Solutions are able to adapt with perfect foresight

• Sometimes in real life, irreversible decisions have to be made (under uncertainty)

=⇒ SA not always realistic

=⇒ Can be overly optimistic and lead to incorrect conclusions!

• Robustness analysis relaxes these standard assumptions
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Robustness Analysis (RA) in static optimization setting

• Given a fixed solution x, what happens if the parameters z deviate from the nominal
case?

1. Will the solution remain feasible?

2. How might the objective value differ?

time

observation:

decision:
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Robustness Analysis (RA) in static optimization setting

Supply A

Demand C

Process A100 ⩽ 100

100

Process B

0

0 ⩽ 0
0 ⩽ 0

100 ⩽ 100
1.00

Supply B

1.05

Supply A

Demand C

Process A100 ⩽ 100 + 0

100 + 0

Process B
0 ⩽ 0 + 0

100 ⩽ 100 + 0
1.00

Supply B

1.05

0 ⩽ 0 + 0

0 + 0

t = 2

t = 1

Objective Value=220
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Recall our setup

Supply costs: product A is cheaper (on average), but more volatile

• Nominal:

á
c̄1A
c̄2A
c̄1B
c̄2B

ë
=

á
1

1

1.05

1.05

ë
• True: c1A ∼ U(0.5, 1.5) and c2A ∼ U(0.5c1A, 1.5c1A)

▶ Best case: c1A = 0.5 and c2A = 0.25

▶ Worst case: c1A = 1.5 and c2A = 2.25
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Best case scenario

Supply A

Demand C

Process A100 ⩽ 100

100

Process B

0

0 ⩽ 0
0 ⩽ 0

100 ⩽ 100
0.50

Supply B

1.05

Supply A

Demand C

Process A100 ⩽ 100 + 0

100 + 0

Process B
0 ⩽ 0 + 0

100 ⩽ 100 + 0
0.25

Supply B

1.05

0 ⩽ 0 + 0

0 + 0

t = 2

t = 1

Objective Value = 88.8
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Worst case scenario

Supply A

Demand C

Process A100 ⩽ 100

100

Process B

0

0 ⩽ 0
0 ⩽ 0

100 ⩽ 100
1.50

Supply B

1.05

Supply A

Demand C

Process A100 ⩽ 100 + 0

100 + 0

Process B
0 ⩽ 0 + 0

100 ⩽ 100 + 0
2.25

Supply B

1.05

0 ⩽ 0 + 0

0 + 0

t = 2

t = 1

Objective Value = 379.3
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Evaluated on 1000 randomly generated scenarios

100 150 200 250 300 350 400
Objective value

0

20

40

60

80

Fr
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nc

y
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Difference RA and SA (in static setting)
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(a) Robustness analysis in static setting
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(b) Sensitivity analysis

RA assumes the solution is fixed. SA allows the solution to change (with perfect foresight).
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Robustness Analysis in adaptive setting

• In reality, not all decisions are set in stone

▶ Not fair to consider all variables fixed

▶ Some variables are able to adapt to the scenario at hand

• Analysis requires additional component: adaptive decision policy (θ)
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Example of an adaptive decision policy θ

θ̄: Folding horizon re-optimization using expectations over future

• In stage t, where 1 ≤ t ≤ T , we know c1, . . . , ct with certainty and previous decisions
x̄1, . . . x̄t−1 are fixed

• Form expectations over future ĉt+j = E[ct+j |c1, . . . , ct ], j = 1, . . . ,T − t

• Determine xt , . . . , xT by re-solving model with parameters ĉ = (c1, . . . , ct , ĉt+1, . . . , ĉT )
and fixed x̄1, . . . x̄t−1

• Fix x̄t = xt

• t ← t + 1
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Applied to our toy problem

• Recall our setup...

▶ Uncertain supply costs c1 and c2

▶ Static and adaptive investment variables x1 and x2(θ, c1)

Arc capacity

Processing capacity

▶ Adaptive arc flow variables y1(θ, c1) and y2(θ, c1, c2)

=⇒ Three-stage problem

time

observation:

decision:
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Best case scenario (with adaptive decision policy θ̄)

Supply A

Demand C

Process A100 ⩽ 100

100

Process B

0

0 ⩽ 0
0 ⩽ 0

100 ⩽ 100
0.50

Supply B

1.05

Supply A

Demand C

Process A100 ⩽ 100 + 0

100 + 0

Process B
0 ⩽ 0 + 0

100 ⩽ 100 + 0
0.25

Supply B

1.05

0 ⩽ 0 + 0

0 + 0

t = 2

t = 1

Objective Value = 88.8

Expectation ĉ2 = E[c2|c1 = 0.50] = 0.50 ⇒ no additional investments , happy to stick with product A
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“Worst” case scenario (with adaptive decision policy θ̄)

Supply A

Demand C

Process A100 ⩽ 100

100

Process B

0

0 ⩽ 0
0 ⩽ 0

100 ⩽ 100
1.50

Supply B

1.05

Supply A

Demand C

Process A0 ⩽ 100 + 0

100 + 0

Process B
100 ⩽ 0 + 100

0 ⩽ 100 + 0
2.25

Supply B

1.05

100 ⩽ 0 + 100

0 + 100

t = 2

t = 1

Objective Value = 279.3

Expectation ĉ2 = E[c2|c1 = 1.50] = 1.50 ⇒ decide to make additional investments in product B
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Static vs. Adaptive
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(a) Robustness analysis in static setting
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(b) Robustness analysis in 3-stage adaptive setting
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So is the solution sufficiently robust?

• Up to the modeler to decide

• Dependent on situation

• Various risk measures one might want to evaluate

▶ P(objective value ≤ some threshold)

▶ E(objective value)

▶ Worst case objective value

▶ (Conditonal) Value at Risk

▶ . . .
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Evaluation of risk measures

P(cost ≥ 210.2) E(cost) Worst case CVaR (10%)

SA 47% 188.0 220.0 220
RA (static) 49% 210.5 375.3 326.6
RA (adaptive) 49% 204.3 302.2 276.3

• SA too optimistic

• RA (static) too pessimistic

• RA (adaptive) provides most realistic assessment
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Main takeaways

1. While optimization under uncertainty can be difficult, a posteriori evaluation of a given
solution is relatively easy

2. Robustness analysis can be used to assess whether a solution is “sufficiently robust” to
parametric uncertainty

3. When modeling an uncertain & adaptive problem setting, our analysis should not be
overly optimistic (SA), nor overly pessimistic (static RA)
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Thanks for listening! Any questions?

Contact: j.s.starreveld@uva.nl
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