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Optimization under parametric uncertainty

min g(x)

s.t. f(x,2) <0,
where:
® x € R™ is the decision vector, defined on a closed convex feasible set %
® 7 ¢ R™ is an uncertain parameter vector

® g(x) and f(x,z) are scalar-valued functions that are convex in x
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P(f(x,2) <0)>1—¢
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3. Scenario Optimization (Calafiore & Campi, 2005)
f(x,2) <0 Vje{l,...,m}



Practical limitations to stochastic programming approach

® Assumes P is known

® Even when P is known, still generally intractable (Shapiro & Nemirovski, 2005)



Practical limitations to robust optimization approach

supf(x,z) <0
zel

e Computational tractability of reformulation is highly dependent on f and U

> May lead to a huge increase in the number of additional variables and constraints
> If f is non-concave in z, exact reformulations are known only for specific U

® Can be difficult to determine appropriate shape and size of U



Practical limitations to scenario optimization approach

f(x,2) <0 Vje{l,...,m}

® Required number of (randomly sampled) scenarios m quickly becomes
prohibitively large for medium- and large-scale optimization problems
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Three main approaches

How to deal with uncertain constraint f(x,Z) < 0?7

1. Stochastic Programming (Charnes & Cooper, 1959)
P(f(x,2) <0)>1—c¢

2. Robust Optimization (Ben-Tal & Nemirovski, 1998)

supf(x,z) <0
zel

3. Scenario Optimization (Calafiore & Campi, 2005)
f(x,2/) <0 Vje{l,...,m}

= Can we develop a more practical approach? 3



Methodology



lllustrative Example




Example: toy problem from Yanikoglu & den Hertog (2013)

max X1 + X
x1,x2<1

s.t. Z1x1 + Zoxo < 1,

® Uncertain parameters Z; and Z; both uniformly distributed on [—1, 1]
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Example: toy problem from Yanikoglu & den Hertog (2013)

max Xxi + X
x1,%2<1

s.t. Z1x1 + Zoxo < 1,

® Uncertain parameters Z; and Z; both uniformly distributed on [—1, 1]

® Nominal case:
> Expected parameter values (z1, z) = (0,0)
» Nominal (optimal) solution (Xi,%2) = (1,1)

= How “robust” is this solution?
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Imagine we have access to N = 100 scenarios/realizations of (Z, 2,)
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Analyze robustness of nominal solution (x;, %) = (1,1) using our data

Z3
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Use data to estimate the probability that x is feasible

1.0- <3 N ® We find that the uncertain constraint
[ ] o o .
000 o | e . is violated for % of our scenarios
.. ° \\ ° ® .. .
0.5 ¢ ° . . ° » Empirical estimate of
. ¢ : ° ° .. ° \‘\\. .. P*(El)_(l + 22)_(2 S 1) =0.87
° [ N .. P ° . \.\: °
~ i L4 [ ] \\
N 0.0 X L A
° e® o ® o0 o
L)
[ ] [ ] ) o ©®
[ ] [} o
~0.51 . o« o,
o ® ¢ o ®
s °° ® e © » °
-1.0- . ‘e e,
-1.0 -0.5 0.0 0.5 1.0
P41

13



Use data to estimate the probability that x is feasible

® \We find that the uncertain constraint

1.0 ~ .
° ° . . 0
0% e | e . is violated for % of our scenarios
o ° AN ° .. .
05 ¢ ° ° R ° > Empirical estimate of
-2 ] A = o = o
. : o .. ° ”\\0 .. P*(lel + Zoxy < 1) =0.87
¢ . ®e ": ° ;\:\. .
¢ 0.0 % - ® o ® Derive statistical lower bound on
[ ] .
L N 2 T estimate (N = 100, « = 0.01)
[ ] [ ]
° ° °
—0.5 - ° e 9% &° N
°« ® ¢ o ®
« °° - e © L 4
~1.0- o ® e °° .
-1.0 -05 0.0 0.5 1.0
Z1

13
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Use data to estimate the probability that x is feasible

1.0 S N ® We find that the uncertain constraint
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Obtaining a more robust solution

® Imagine we are not content with the robustness of our nominal solution (X1, X2)
> Feasible with probability > 0.78 considered too risky
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Obtaining a more robust solution

® Imagine we are not content with the robustness of our nominal solution (X1, X2)
> Feasible with probability > 0.78 considered too risky

® We can add scenarios/constraints to our optimization problem
max X1 + X2
x1,x2<1
s.t. Zix1 + Zox0 < 1, (nominal scenario)

zix1 + zpxp < 1, (scenario 1)

® Restricts the feasible region, and may lower the optimal objective value
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Which scenario(s) should be added?
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Pick scenario 2'! = (0.96,0.60) and resolve problem with added constraint
= x' = (0.42,1)
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Analyze robustness of new solution x’
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Analyze robustness of new solution x’

22
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Trade-off between objective value and robustness

® Can construct trade-off curve from obtained solutions
> Offers insight into “price of robustness’ (Bertsimas & Sim, 2004)
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Deriving probability guarantee
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Problem setup

Uncertain convex program (UCP):
min g(x)
xer (UCP)
s.t. f(x,2) <0,

® We are interested in finding “robust” solutions to (UCP), i.e. solutions which are
likely to be feasible despite the uncertainty
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Problem setup

Uncertain convex program (UCP):
min g(x)
xer (UCP)
s.t. f(x,2) <0,

® We are interested in finding “robust” solutions to (UCP), i.e. solutions which are
likely to be feasible despite the uncertainty

® Assume that Z is a random variable with probability distribution P*

® Given an tolerable probability of constraint violation €, we would like the following
“probability guarantee” to hold:

P*(f(x,%) < 0)>1—e.
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Data + statistical testing to provide probability guarantee

® Assume we do not know P*, but have access to N i.i.d. data points
D= {zl, e ,ZN} that originate from P*
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Data + statistical testing to provide probability guarantee

® Assume we do not know P*, but have access to N i.i.d. data points
D= {zl, . ,zN} that originate from P*

® Given such data and some fixed solution X, we can use statistical testing to state
with confidence > 1 — « that:

P*(f(x,2) <0)>#~

where:

® (« is statistical probability of making a type | error
® 7 is the feasibility “certificate”
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Our novel method for deriving feasibility “certificate” 5

® Given some fixed solution X and data set D = {21, e ,zN}
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N
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Our novel method for deriving feasibility “certificate” 5

® Given some fixed solution X and data set D = {zl, e ,zN}

For each scenario z' € Dy, we compute whether f(X,2z') < 0 is satisfied

N
> Gives an empirical estimate p; = % > Lirx2)<q]
i=1 B

Construct a (1 — a)-statistical confidence set Q4 around empirical estimate p;
using the modified chi-squared distance

g1 >0, +

Qs(p1, N, a) = eR <
s(P1 ) {Ch o 1-pp N

(1 —p1)* | (g1 —p1)? < X%,l—a} Q)

® Determine certificate 4 by computing ¥ := min q;
q1€Qy

22



Key elements in our novel method

® P*(z € U) is an underestimation of P*(f(x,z) < 0)

® Because we consider X fixed and provide an “a posteriori” probability guarantee,
the statistical test is on the univariate random variable f(x, )
» Two classes:

f(x,2) <0
f(x,z) >0

Only 1 degree of freedom in statistical test

= Sharp probability guarantees

= Independent of dimensions of x and z
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Broad overview of our solution approach (ROBIST)

® Access to some sufficiently large data set D
> Split into training data D" and testing data Dj*
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Broad overview of our solution approach (ROBIST)

® Access to some sufficiently large data set D
> Split into training data D" and testing data Dj*

1. Generation procedure

» Sample a (small) subset of scenarios S from Df\;fi” to generate solutions
x = argmin, o {g(x) | f(x,2) <0, Vz € S} (SCPs)

2. Evaluation procedure

> Use D}\‘,*:t to analyze the robustness of the generated solutions

= Can we combine these two procedures in an iterative heuristic search algorithm?

24
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The algorithm

Input:
* Two data sets D" and Dyt
* Data sets are independent and observations in D" are i.i.d.
® Acceptable probability of constraint violation
® Statistical confidence level «

® Stopping criteria (time limit and/or maximum number of iterations)
Actions (at each iteration /):

® Solve (SCPg;) to obtain x;, where S; C p;\?fin
® Evaluate robustness of x; using all scenarios in DR?fin

e |f insufficiently robust, add a scenario to S;, else, remove a scenario from S;
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The algorithm

Input:

® Two data sets DR?" and Djt
* Data sets are independent and observations in Dg** are i.i.d.
® Acceptable probability of constraint violation €
® Statistical confidence level «
® Stopping criteria (time limit and/or maximum number of iterations)

Actions (at each iteration i):

® Solve (SCPsg,) to obtain x;, where S; C Dain
1 1 .
® Evaluate robustness of x; using all scenarios in D"
e |f insufficiently robust, add a scenario to §;, else, remove a scenario from S;

Output:

e Use Dﬁ;t to determine best found solution x;= 25



Numerical Experiments




Applications considered in the paper

1. Toy problem
» Comparison with Calafiore & Campi (2005) and Yanikoglu & den Hertog (2013)

2. Portfolio management problem

» Comparison with robust optimization approach, the data-driven uncertainty sets
presented in Bertsimas et al. (2018)

3. Weighted distribution problem

» Comparison with scenario optimization approach, the methods of Calafiore & Campi
(2005); Care et al. (2014); Calafiore (2016) and Garatti et al. (2022)

4. Two-stage adaptive lot-sizing problem
» Comparison with Vayanos et al. (2012)
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Application |: Toy Problem
Comparison with Calafiore & Campi (2005) and Yanikoglu & den Hertog (2013)
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Method proposed in Calafiore & Campi (2005)

Solve a sampled convex program (SCP), where each scenario z/ is randomly sampled:
min g(x)

xex , (SCP)
st. f(x,27) <0 Vje{l,...,m}.
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Method proposed in Calafiore & Campi (2005)

Solve a sampled convex program (SCP), where each scenario 2/ is randomly sampled:

min g(x)
xex , (SCP)
st. f(x,2) <0 Vje{l,...,m}.

To ensure that the resulting solution satisfies P*(f(x,2) < 0) > 1 —,

with confidence > 1 — «, the following must hold:
S dim(x) 1

— Y

€

This result was later tightened in Campi & Garatti (2008) 28



Method proposed in Yanikoglu & den Hertog (2013)

1) Divide uncertainty space into cells
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Method proposed in Yanikoglu & den Hertog (2013)

2) Solve robust counterpart with (ellipsoidal) uncertainty set
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Method proposed in Yanikoglu & den Hertog (2013)

3) Compute probability guarantee with modified x? test
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Toy Problem

Same toy problem as earlier, but now in k dimensions:

T
TERC 52 (2)
Z™x <1, (3)
where:
® x c RK
® 7c[-1,1]

30



Settings for numerical experiment

® Desired probability feasible 1 —e¢ = 0.95

e Statistical confidence level 1 — o = 0.99
® ROBIST settings:

> N; = N, =500
> imax = 500
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Results: data and computation time

N Computation time (s)

k C&C Y&dH ROBIST C&C Y&dH ROBIST
2 90 1,000 1,000 0.1 6 5
3 130 10,000 1,000 0.2 6 5
4 165 100,000 1,000 0.2 27 7
5 198 1,000,000 1,000 0.2 200 7

10 344 1011 1,000 0.4 - 12
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Results: quality of solutions

Objective Probability guarantee

k C&C Y&dH ROBIST C&C Y&dH ROBIST
2 1.19 1.20 1.32 0.950 0.969 0.951
3 1.39 1.42 1.63 0.950 0.958 0.951
4 1.57 1.67 1.83 0.950 0.952 0.951
5 1.76 1.85 2.06 0.950 0.951 0.952

10 2.48 - 2.84 0.950 - 0.952
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Results: quality of solutions

Objective Probability guarantee Out-of-sample probability
k C&C Y&dH ROBIST C&C Y&dH ROBIST C&C Y&dH ROBIST
2 1.19 1.20 1.32 0.950 0.969 0.951 0.981 0.985 0.968
3 1.39 1.42 1.63 0.950 0.958 0.951 0.977 0.985 0.964
4 1.57 1.67 1.83 0.950 0.952 0.951 0.975 0.983 0.966
5 1.76 1.85 2.06 0.950 0.951 0.952 0.973 0.983 0.961

10 2.48 - 2.84 0.950 - 0.952 0.972 - 0.959
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Conclusion




Main takeaways

® While optimization under uncertainty can be difficult, robustness analysis of a
given solution is relatively easy
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Main takeaways

® While optimization under uncertainty can be difficult, robustness analysis of a

given solution is relatively easy

® Our novel method offers many practical advantages over existing methods

> Simple & accessible
» Applicable to a wide variety of problems

> Computationally efficient

® Numerical results have been very promising!
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Thanks for listening!

If interested in the paper, please contact us at: j.s.starreveldQuva.nl
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