ROBIST: Robust Optimization By Iterative Scenario Sampling and Statistical Testing

A Practical Scenario-Based Approach to Optimization Under Uncertainty

Justin Starreveld Guanyu Jin Dick den Hertog Roger Laeven

31-05-2023 (SIAM OP23)

Faculty of Economics and Business, University of Amsterdam

1. Introduction

- 2. Methodology
- 3. Numerical Experiments
- 4. Conclusion

Introduction

$$egin{aligned} \min_{\mathbf{x}\in\mathscr{X}} \ g(\mathbf{x}) \ ext{s.t.} \ f(\mathbf{x}, \widetilde{\mathbf{z}}) \leq 0, \end{aligned}$$

where:

- $\mathbf{x} \in \mathbb{R}^{n_{\mathbf{x}}}$ is the decision vector, defined on a closed convex feasible set \mathscr{X}
- $\tilde{\mathbf{z}} \in \mathbb{R}^{n_{\mathbf{z}}}$ is an uncertain parameter vector
- $g(\mathbf{x})$ and $f(\mathbf{x}, \tilde{\mathbf{z}})$ are scalar-valued functions that are convex in \mathbf{x}

$$egin{aligned} \min_{\mathbf{x}\in\mathscr{X}} \ g(\mathbf{x}) \ ext{s.t.} \ f(\mathbf{x}, \widetilde{\mathbf{z}}) \leq 0, \end{aligned}$$

where:

- $\mathbf{x} \in \mathbb{R}^{n_{\mathbf{x}}}$ is the decision vector, defined on a closed convex feasible set \mathscr{X}
- $\tilde{\mathbf{z}} \in \mathbb{R}^{n_{\mathbf{z}}}$ is an uncertain parameter vector
- $g(\mathbf{x})$ and $f(\mathbf{x}, \tilde{\mathbf{z}})$ are scalar-valued functions that are convex in \mathbf{x}
- \Rightarrow How to deal with uncertain constraint $f(\mathbf{x}, \tilde{\mathbf{z}}) \leq 0$?

1. Stochastic Programming (Charnes & Cooper, 1959)

 $\mathbb{P}(f(\mathbf{x}, \widetilde{\mathbf{z}}) \leq 0) \geq 1 - \epsilon$

1. Stochastic Programming (Charnes & Cooper, 1959)

 $\mathbb{P}(f(\mathbf{x}, \widetilde{\mathbf{z}}) \leq 0) \geq 1 - \epsilon$

2. Robust Optimization (Ben-Tal & Nemirovski, 1998)

 $\sup_{\mathbf{z}\in\mathcal{U}}f(\mathbf{x},\mathbf{z})\leq 0$

1. Stochastic Programming (Charnes & Cooper, 1959)

 $\mathbb{P}(f(\mathsf{x}, \widetilde{\mathsf{z}}) \leq 0) \geq 1 - \epsilon$

2. Robust Optimization (Ben-Tal & Nemirovski, 1998)

 $\sup_{\mathbf{z}\in\mathcal{U}}f(\mathbf{x},\mathbf{z})\leq 0$

3. Scenario Optimization (Calafiore & Campi, 2005)

 $f(\mathbf{x}, \mathbf{z}^j) \leq 0 \quad \forall j \in \{1, \dots, m\}$

$$\mathbb{P}(f(\mathbf{x}, \widetilde{\mathbf{z}}) \leq 0) \geq 1 - \epsilon$$

- Assumes \mathbb{P} is known
- Even when \mathbb{P} is known, still generally intractable (Shapiro & Nemirovski, 2005)

 $\sup_{\mathbf{z}\in\mathcal{U}}f(\mathbf{x},\mathbf{z})\leq 0$

- Computational tractability of reformulation is highly dependent on f and $\mathcal U$
 - May lead to a huge increase in the number of additional variables and constraints
 - ▶ If f is non-concave in \mathbf{z} , exact reformulations are known only for specific \mathcal{U}
- $\bullet\,$ Can be difficult to determine appropriate shape and size of ${\cal U}$

$f(\mathbf{x}, \mathbf{z}^j) \leq 0 \quad \forall j \in \{1, \dots, m\}$

• Required number of (randomly sampled) scenarios *m* quickly becomes prohibitively large for medium- and large-scale optimization problems

1. Stochastic Programming (Charnes & Cooper, 1959)

 $\mathbb{P}(f(\mathbf{x}, \widetilde{\mathbf{z}}) \leq 0) \geq 1 - \epsilon$

- 2. Robust Optimization (Ben-Tal & Nemirovski, 1998) $\sup_{\mathbf{z}\in\mathcal{U}}f(\mathbf{x},\mathbf{z})\leq 0$
- 3. Scenario Optimization (Calafiore & Campi, 2005)

 $f(\mathbf{x}, \mathbf{z}^j) \leq 0 \quad \forall j \in \{1, \dots, m\}$

1. Stochastic Programming (Charnes & Cooper, 1959)

 $\mathbb{P}(f(\mathbf{x}, \widetilde{\mathbf{z}}) \leq 0) \geq 1 - \epsilon$

- 2. Robust Optimization (Ben-Tal & Nemirovski, 1998) $\sup_{\mathbf{z}\in\mathcal{U}}f(\mathbf{x},\mathbf{z})\leq 0$
- 3. Scenario Optimization (Calafiore & Campi, 2005)

 $f(\mathbf{x}, \mathbf{z}^j) \leq 0 \quad \forall j \in \{1, \dots, m\}$

 $\Rightarrow\,$ Can we develop a more practical approach?

Methodology

Illustrative Example

$$\begin{array}{l} \max_{x_1, x_2 \leq 1} \;\; x_1 + x_2 \\ \text{s.t.} \;\; \tilde{z}_1 x_1 + \tilde{z}_2 x_2 \leq 1, \end{array}$$

• Uncertain parameters $ilde{z}_1$ and $ilde{z}_2$ both uniformly distributed on [-1,1]

$$(-)\underbrace{\min_{\underline{x_1, x_2 \leq 1}}_{\underline{x}}}_{g(\mathbf{x})} \underbrace{\underbrace{-(x_1 + x_2)}_{g(\mathbf{x})}}_{g(\mathbf{x})} \leq 0,$$

s.t.
$$\underbrace{\tilde{z_1}x_1 + \tilde{z_2}x_2 - 1}_{f(\mathbf{x},\tilde{\mathbf{z}})} \leq 0,$$

• Uncertain parameters \tilde{z}_1 and \tilde{z}_2 both uniformly distributed on [-1,1]

$$\max_{\substack{x_1, x_2 \leq 1}} x_1 + x_2$$

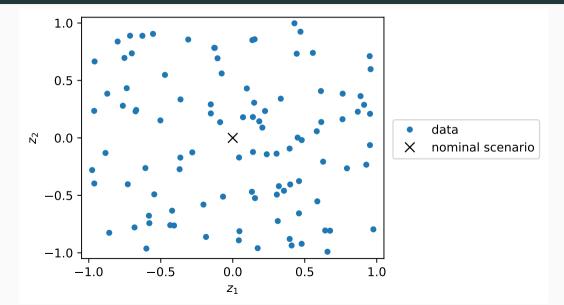
s.t. $\tilde{z}_1 x_1 + \tilde{z}_2 x_2 \leq 1$

- Uncertain parameters \tilde{z}_1 and \tilde{z}_2 both uniformly distributed on [-1,1]
- Nominal case:
 - Expected parameter values $(\bar{z}_1, \bar{z}_2) = (0, 0)$
 - Nominal (optimal) solution $(\bar{x}_1, \bar{x}_2) = (1, 1)$

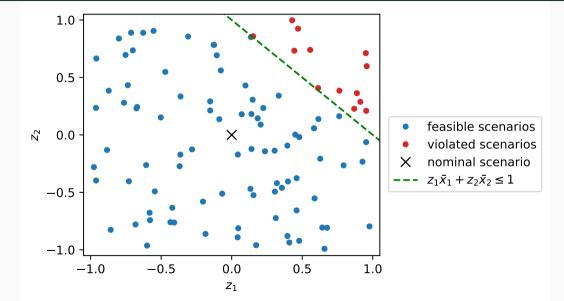
$$\begin{array}{l} \max_{x_1,x_2\leq 1} \;\; x_1+x_2 \\ {\rm s.t.} \;\; \tilde{z}_1x_1+\tilde{z}_2x_2\leq 1, \end{array}$$

- Uncertain parameters \tilde{z}_1 and \tilde{z}_2 both uniformly distributed on [-1,1]
- Nominal case:
 - Expected parameter values $(\bar{z}_1, \bar{z}_2) = (0, 0)$
 - Nominal (optimal) solution $(\bar{x}_1, \bar{x}_2) = (1, 1)$
- \Rightarrow How "robust" is this solution?

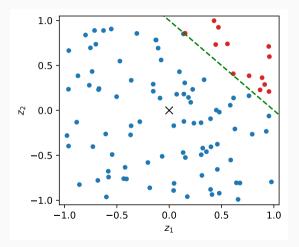
Imagine we have access to N = 100 scenarios/realizations of $(\tilde{z}_1, \tilde{z}_2)$



Analyze robustness of nominal solution $(\bar{x}_1, \bar{x}_2) = (1, 1)$ using our data

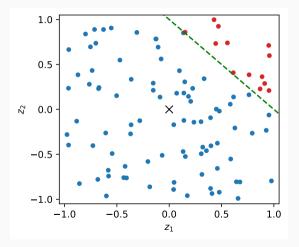


Use data to estimate the probability that \bar{x} is feasible



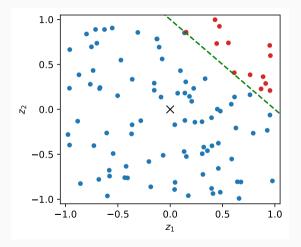
- We find that the uncertain constraint is violated for $\frac{13}{100}$ of our scenarios
 - Empirical estimate of $\mathbb{P}^*(\tilde{z}_1\bar{x}_1 + \tilde{z}_2\bar{x}_2 \leq 1) = 0.87$

Use data to estimate the probability that $\bar{\boldsymbol{x}}$ is feasible



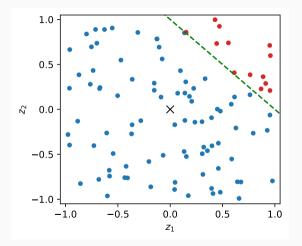
- We find that the uncertain constraint is violated for ¹³/₁₀₀ of our scenarios
 - Empirical estimate of $\mathbb{P}^*(\tilde{z}_1 \bar{x}_1 + \tilde{z}_2 \bar{x}_2 \leq 1) = 0.87$
- Derive statistical lower bound on estimate ($N = 100, \alpha = 0.01$)

Use data to estimate the probability that \bar{x} is feasible



- We find that the uncertain constraint is violated for ¹³/₁₀₀ of our scenarios
 - Empirical estimate of $\mathbb{P}^*(\tilde{z}_1 \bar{x}_1 + \tilde{z}_2 \bar{x}_2 \leq 1) = 0.87$
- Derive statistical lower bound on estimate ($N = 100, \alpha = 0.01$)
 - \Rightarrow Lower bound = 0.78

Use data to estimate the probability that \bar{x} is feasible



- We find that the uncertain constraint is violated for $\frac{13}{100}$ of our scenarios
 - Empirical estimate of $\mathbb{P}^*(\tilde{z}_1 \bar{x}_1 + \tilde{z}_2 \bar{x}_2 \leq 1) = 0.87$
- Derive statistical lower bound on estimate ($N = 100, \alpha = 0.01$)

 \Rightarrow Lower bound = 0.78

• While optimizing for a single scenario $(\bar{z}_1, \bar{z}_2) = (0, 0)$, the resulting solution is likely to be feasible w.p. ≥ 0.78

Obtaining a more robust solution

- Imagine we are not content with the robustness of our nominal solution (\bar{x}_1, \bar{x}_2)
 - \blacktriangleright Feasible with probability ≥ 0.78 considered too risky

Obtaining a more robust solution

- Imagine we are not content with the robustness of our nominal solution (\bar{x}_1, \bar{x}_2)
 - Feasible with probability \geq 0.78 considered too risky
- We can add scenarios/constraints to our optimization problem

$$\begin{array}{ll} \max_{x_1, x_2 \leq 1} & x_1 + x_2 \\ \text{s.t. } \bar{z}_1 x_1 + \bar{z}_2 x_2 \leq 1, \\ & z_1^i x_1 + z_2^i x_2 \leq 1, \end{array} \qquad (\text{nominal scenario}) \\ \end{array}$$

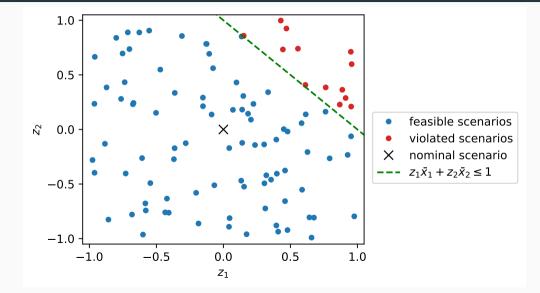
Obtaining a more robust solution

- Imagine we are not content with the robustness of our nominal solution $(ar{x}_1, ar{x}_2)$
 - \blacktriangleright Feasible with probability ≥ 0.78 considered too risky
- We can add scenarios/constraints to our optimization problem

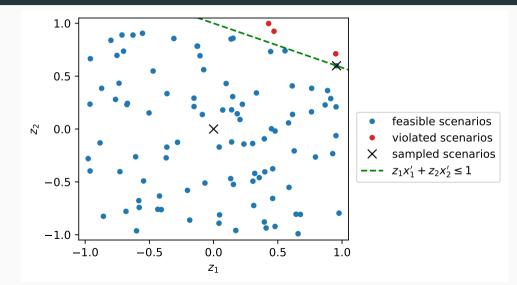
$$\begin{array}{ll} \max_{x_1, x_2 \leq 1} & x_1 + x_2 \\ \text{s.t. } \bar{z}_1 x_1 + \bar{z}_2 x_2 \leq 1, \\ & z_1^i x_1 + z_2^i x_2 \leq 1, \end{array} \qquad (\text{nominal scenario})$$

• Restricts the feasible region, and may lower the optimal objective value

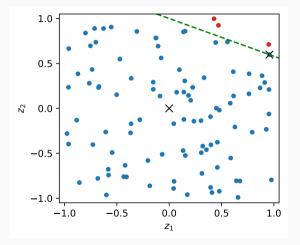
Which scenario(s) should be added?



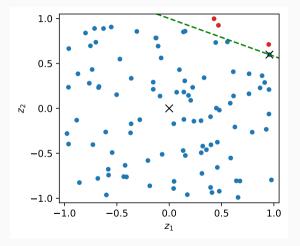
Pick scenario $\hat{z}^{11} = (0.96, 0.60)$ and resolve problem with added constraint $\Rightarrow x' = (0.42, 1)$



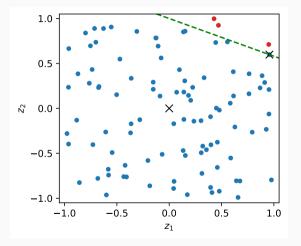
16



- We find that the uncertain constraint is violated for $\frac{3}{100}$ of our scenarios
 - Empirical estimate of $\mathbb{P}^*(\tilde{z}_1 \bar{x}_1 + \tilde{z}_2 \bar{x}_2 \leq 1) = 0.97$

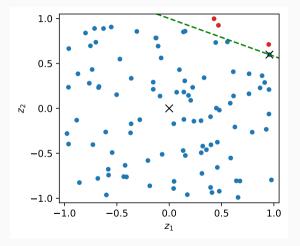


- We find that the uncertain constraint is violated for $\frac{3}{100}$ of our scenarios
 - Empirical estimate of $\mathbb{P}^*(\tilde{z}_1 \bar{x}_1 + \tilde{z}_2 \bar{x}_2 \leq 1) = 0.97$
- Derive statistical lower bound on estimate ($N = 100, \alpha = 0.01$)



- We find that the uncertain constraint is violated for $\frac{3}{100}$ of our scenarios
 - Empirical estimate of $\mathbb{P}^*(\tilde{z}_1 \bar{x}_1 + \tilde{z}_2 \bar{x}_2 \leq 1) = 0.97$
- Derive statistical lower bound on estimate ($N = 100, \alpha = 0.01$)

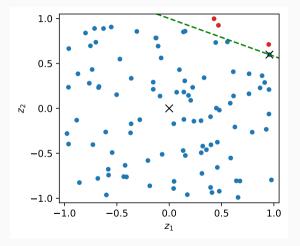
 \Rightarrow Lower bound = 0.93



- We find that the uncertain constraint is violated for $\frac{3}{100}$ of our scenarios
 - Empirical estimate of $\mathbb{P}^*(\tilde{z}_1 \bar{x}_1 + \tilde{z}_2 \bar{x}_2 \leq 1) = 0.97$
- Derive statistical lower bound on estimate ($N = 100, \alpha = 0.01$)

 \Rightarrow Lower bound = 0.93

• Probability guarantee: $0.78 \rightarrow 0.93$



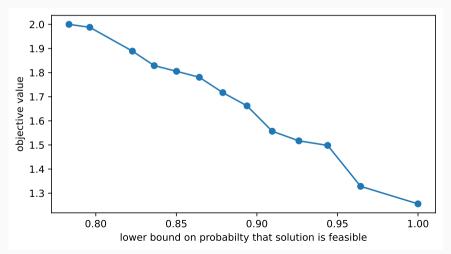
- We find that the uncertain constraint is violated for $\frac{3}{100}$ of our scenarios
 - Empirical estimate of $\mathbb{P}^*(\tilde{z}_1\bar{x}_1 + \tilde{z}_2\bar{x}_2 \le 1) = 0.97$
- Derive statistical lower bound on estimate (N = 100, α = 0.01)
 ⇒ Lower bound = 0.93

 \Rightarrow Lower bound = 0.93

- Probability guarantee: $0.78 \rightarrow 0.93$
- Objective value: $2.00 \rightarrow 1.42$

Trade-off between objective value and robustness

- Can construct trade-off curve from obtained solutions
 - Offers insight into "price of robustness" (Bertsimas & Sim, 2004)



Deriving probability guarantee

Uncertain convex program (UCP):

$$\min_{\mathbf{x} \in \mathscr{X}} g(\mathbf{x})$$
s.t. $f(\mathbf{x}, \tilde{\mathbf{z}}) \leq 0,$
(UCP)

• We are interested in finding "robust" solutions to (UCP), i.e. solutions which are likely to be feasible despite the uncertainty

Uncertain convex program (UCP):

$$\min_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x})$$
s.t. $f(\mathbf{x}, \tilde{\mathbf{z}}) \leq 0,$
(UCP)

- We are interested in finding "robust" solutions to (UCP), i.e. solutions which are likely to be feasible despite the uncertainty
- Assume that \tilde{z} is a random variable with probability distribution \mathbb{P}^*

Uncertain convex program (UCP):

$$\min_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x})$$
s.t. $f(\mathbf{x}, \tilde{\mathbf{z}}) \leq 0,$
(UCP)

- We are interested in finding "robust" solutions to (UCP), i.e. solutions which are likely to be feasible despite the uncertainty
- Assume that \tilde{z} is a random variable with probability distribution \mathbb{P}^{*}
- Given an tolerable probability of constraint violation *ε*, we would like the following "probability guarantee" to hold:

$$\mathbb{P}^*(f(\mathbf{x}, \tilde{\mathbf{z}}) \leq 0) \geq 1 - \epsilon.$$

• Assume we do not know \mathbb{P}^* , but have access to N i.i.d. data points $\mathcal{D} = \{\mathbf{z}^1, \dots, \mathbf{z}^N\}$ that originate from \mathbb{P}^*

- Assume we do not know \mathbb{P}^* , but have access to N i.i.d. data points $\mathcal{D} = \{\mathbf{z}^1, \dots, \mathbf{z}^N\}$ that originate from \mathbb{P}^*
- Given such data and some fixed solution $\bar{\mathbf{x}}$, we can use statistical testing to state with confidence $\geq 1 \alpha$ that:

$$\mathbb{P}^*(f(ar{\mathsf{x}}, ar{\mathsf{z}}) \leq 0) \geq ar{\gamma}$$

- Assume we do not know \mathbb{P}^* , but have access to N i.i.d. data points $\mathcal{D} = \{\mathbf{z}^1, \dots, \mathbf{z}^N\}$ that originate from \mathbb{P}^*
- Given such data and some fixed solution $\bar{\mathbf{x}}$, we can use statistical testing to state with confidence $\geq 1 \alpha$ that:

 $\mathbb{P}^*(f(ar{\mathsf{x}}, ar{\mathsf{z}}) \leq 0) \geq ar{\gamma}$

where:

• α is statistical probability of making a type I error

- Assume we do not know \mathbb{P}^* , but have access to N i.i.d. data points $\mathcal{D} = \{\mathbf{z}^1, \dots, \mathbf{z}^N\}$ that originate from \mathbb{P}^*
- Given such data and some fixed solution $\bar{\mathbf{x}}$, we can use statistical testing to state with confidence $\geq 1 \alpha$ that:

$$\mathbb{P}^*(f(ar{\mathsf{x}},ar{\mathsf{z}})\leq 0)\geq ar{\gamma}$$

where:

- α is statistical probability of making a type I error
- $\bar{\gamma}$ is the feasibility "certificate"

• Given some fixed solution $\bar{\mathbf{x}}$ and data set $\mathcal{D} = \{\mathbf{z}^1, \dots, \mathbf{z}^N\}$

- Given some fixed solution $\bar{\boldsymbol{x}}$ and data set $\mathcal{D} = \left\{\boldsymbol{z}^1, \ldots, \boldsymbol{z}^N\right\}$
- For each scenario $\mathbf{z}^i \in \mathcal{D}_N$, we compute whether $f(\bar{\mathbf{x}}, \mathbf{z}^i) \leq 0$ is satisfied

- Given some fixed solution $\bar{\mathbf{x}}$ and data set $\mathcal{D} = \{\mathbf{z}^1, \dots, \mathbf{z}^N\}$
- For each scenario $\mathbf{z}^i \in \mathcal{D}_N$, we compute whether $f(\bar{\mathbf{x}}, \mathbf{z}^i) \leq 0$ is satisfied

• Gives an empirical estimate
$$p_1 \coloneqq \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{[f(\bar{\mathbf{x}}, \mathbf{z}') \leq 0]}$$

- Given some fixed solution $\bar{\boldsymbol{x}}$ and data set $\mathcal{D} = \left\{\boldsymbol{z}^1, \ldots, \boldsymbol{z}^N\right\}$
- For each scenario $\mathbf{z}^i \in \mathcal{D}_N$, we compute whether $f(\bar{\mathbf{x}}, \mathbf{z}^i) \leq 0$ is satisfied

• Gives an empirical estimate
$$p_1 \coloneqq \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{[f(\bar{\mathbf{x}}, \mathbf{z}^i) \le 0]}$$

 Construct a (1 - α)-statistical confidence set Q_φ around empirical estimate p₁ using the modified chi-squared distance

$$\mathcal{Q}_{\phi}(p_1, N, \alpha) := \left\{ q_1 \in \mathbb{R} \mid q_1 \ge 0, \ \frac{(q_1 - p_1)^2}{p_1} + \frac{(q_1 - p_1)^2}{1 - p_1} \le \frac{\chi^2_{1,1-\alpha}}{N} \right\}.$$
 (1)

- Given some fixed solution $\bar{\boldsymbol{x}}$ and data set $\mathcal{D} = \left\{\boldsymbol{z}^1, \ldots, \boldsymbol{z}^N\right\}$
- For each scenario $\mathbf{z}^i \in \mathcal{D}_N$, we compute whether $f(\bar{\mathbf{x}}, \mathbf{z}^i) \leq 0$ is satisfied

• Gives an empirical estimate
$$p_1 := \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{[f(\bar{\mathbf{x}}, \mathbf{z}^i) \leq 0]}$$

 Construct a (1 – α)-statistical confidence set Q_φ around empirical estimate p₁ using the modified chi-squared distance

$$\mathcal{Q}_{\phi}(p_1, N, \alpha) := \left\{ q_1 \in \mathbb{R} \mid q_1 \ge 0, \; \frac{(q_1 - p_1)^2}{p_1} + \frac{(q_1 - p_1)^2}{1 - p_1} \le \frac{\chi^2_{1, 1 - \alpha}}{N} \right\}.$$
 (1)

• Determine certificate $ar{\gamma}$ by computing $ar{\gamma} := \min_{q_1 \in \mathcal{Q}_\phi} q_1$

Key elements in our novel method

- $\mathbb{P}^*(\tilde{\mathbf{z}} \in \mathcal{U})$ is an underestimation of $\mathbb{P}^*(f(\mathbf{x}, \tilde{\mathbf{z}}) \leq 0)$
- Because we consider x
 fixed and provide an "a posteriori" probability guarantee, the statistical test is on the *univariate* random variable f(x
 x
 x
)
 - ► Two classes:
 - i. $f(\mathbf{ar{x}}, \mathbf{ ilde{z}}) \leq 0$
 - ii. $f(\bar{\mathbf{x}},\tilde{\mathbf{z}})>0$
 - \Rightarrow Only 1 degree of freedom in statistical test
- \Rightarrow Sharp probability guarantees
- $\Rightarrow\,$ Independent of dimensions of x and z

- \bullet Access to some sufficiently large data set ${\cal D}$
 - ▶ Split into training data $\mathcal{D}_{N_1}^{\text{train}}$ and testing data $\mathcal{D}_{N_2}^{\text{test}}$

- \bullet Access to some sufficiently large data set ${\cal D}$
 - ▶ Split into training data $\mathcal{D}_{N_1}^{\text{train}}$ and testing data $\mathcal{D}_{N_2}^{\text{test}}$
- 1. Generation procedure
 - Sample a (small) subset of scenarios S from $\mathcal{D}_{N_1}^{\text{train}}$ to generate solutions

$$\mathbf{x} \coloneqq \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \{ g(\mathbf{x}) \mid f(\mathbf{x}, \mathbf{z}) \le 0, \ \forall \mathbf{z} \in \mathcal{S} \}$$
(SCP_S)

- \bullet Access to some sufficiently large data set ${\cal D}$
 - ▶ Split into training data $\mathcal{D}_{N_1}^{\text{train}}$ and testing data $\mathcal{D}_{N_2}^{\text{test}}$
- 1. Generation procedure
 - ▶ Sample a (small) subset of scenarios S from $\mathcal{D}_{N_1}^{\text{train}}$ to generate solutions

$$\mathbf{x} \coloneqq \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \left\{ g(\mathbf{x}) \mid f(\mathbf{x}, \mathbf{z}) \le 0, \ \forall \mathbf{z} \in \mathcal{S} \right\}$$
(SCP_S)

- 2. Evaluation procedure
 - ▶ Use $\mathcal{D}_{N_2}^{\text{test}}$ to analyze the robustness of the generated solutions

- \bullet Access to some sufficiently large data set ${\cal D}$
 - ▶ Split into training data $\mathcal{D}_{N_1}^{\text{train}}$ and testing data $\mathcal{D}_{N_2}^{\text{test}}$
- 1. Generation procedure
 - ▶ Sample a (small) subset of scenarios S from $\mathcal{D}_{N_1}^{\text{train}}$ to generate solutions

$$\mathbf{x} \coloneqq \operatorname{argmin}_{\mathbf{x} \in \mathscr{X}} \{ g(\mathbf{x}) \mid f(\mathbf{x}, \mathbf{z}) \le 0, \ \forall \mathbf{z} \in \mathcal{S} \}$$
(SCP_S)

- 2. Evaluation procedure
 - ▶ Use $\mathcal{D}_{N_2}^{\text{test}}$ to analyze the robustness of the generated solutions
- \Rightarrow Can we combine these two procedures in an iterative heuristic search algorithm?

• Two data sets $\mathcal{D}_{N_1}^{\text{train}}$ and $\mathcal{D}_{N_2}^{\text{test}}$

• Two data sets $\mathcal{D}_{N_1}^{\text{train}}$ and $\mathcal{D}_{N_2}^{\text{test}}$

 $^{*}\,$ Data sets are independent and observations in $\mathcal{D}_{N_{2}}^{\text{test}}$ are i.i.d.

• Two data sets $\mathcal{D}_{N_1}^{\text{train}}$ and $\mathcal{D}_{N_2}^{\text{test}}$

* Data sets are independent and observations in $\mathcal{D}_{N_2}^{\text{test}}$ are i.i.d.

• Acceptable probability of constraint violation ϵ

• Two data sets $\mathcal{D}_{N_1}^{\text{train}}$ and $\mathcal{D}_{N_2}^{\text{test}}$

* Data sets are independent and observations in $\mathcal{D}_{N_2}^{\text{test}}$ are i.i.d.

- Acceptable probability of constraint violation $\boldsymbol{\epsilon}$
- Statistical confidence level α

• Two data sets $\mathcal{D}_{N_1}^{\text{train}}$ and $\mathcal{D}_{N_2}^{\text{test}}$

* Data sets are independent and observations in $\mathcal{D}_{N_2}^{\text{test}}$ are i.i.d.

- Acceptable probability of constraint violation ϵ
- Statistical confidence level α
- Stopping criteria (time limit and/or maximum number of iterations)

The algorithm

Input:

- Two data sets $\mathcal{D}_{N_1}^{\text{train}}$ and $\mathcal{D}_{N_2}^{\text{test}}$
 - * Data sets are independent and observations in $\mathcal{D}_{\textit{N}_{2}}^{\text{test}}$ are i.i.d.
- Acceptable probability of constraint violation $\boldsymbol{\epsilon}$
- Statistical confidence level α
- Stopping criteria (time limit and/or maximum number of iterations)

Actions (at each iteration *i*):

- Solve (SCP_{S_i}) to obtain \mathbf{x}_i , where $S_i \subseteq \mathcal{D}_{N_1}^{\text{train}}$
- Evaluate robustness of \mathbf{x}_i using all scenarios in $\mathcal{D}_{N_1}^{\text{train}}$
- If insufficiently robust, add a scenario to S_i , else, remove a scenario from S_i

The algorithm

Input:

- Two data sets $\mathcal{D}_{N_1}^{\text{train}}$ and $\mathcal{D}_{N_2}^{\text{test}}$
 - * Data sets are independent and observations in $\mathcal{D}_{N_2}^{\text{test}}$ are i.i.d.
- Acceptable probability of constraint violation $\boldsymbol{\epsilon}$
- Statistical confidence level α
- Stopping criteria (time limit and/or maximum number of iterations)

Actions (at each iteration i):

- Solve (SCP_{S_i}) to obtain \mathbf{x}_i , where $S_i \subseteq \mathcal{D}_{N_1}^{train}$
- Evaluate robustness of \mathbf{x}_i using all scenarios in $\mathcal{D}_{N_1}^{\text{train}}$
- If insufficiently robust, add a scenario to S_i , else, remove a scenario from S_i

Output:

- Use $\mathcal{D}_{N_2}^{\text{test}}$ to determine best found solution x_{i^*}

Numerical Experiments

Applications considered in the paper

- 1. Toy problem
 - Comparison with Calafiore & Campi (2005) and Yanıkoğlu & den Hertog (2013)
- 2. Portfolio management problem
 - Comparison with robust optimization approach, the data-driven uncertainty sets presented in Bertsimas et al. (2018)
- 3. Weighted distribution problem
 - Comparison with scenario optimization approach, the methods of Calafiore & Campi (2005); Carè et al. (2014); Calafiore (2016) and Garatti et al. (2022)
- 4. Two-stage adaptive lot-sizing problem
 - Comparison with Vayanos et al. (2012)

Application I: Toy Problem

Comparison with Calafiore & Campi (2005) and Yanıkoğlu & den Hertog (2013)

Solve a sampled convex program (SCP), where each scenario z^{j} is randomly sampled:

$$\min_{\mathbf{x}\in\mathcal{X}} g(\mathbf{x})$$
s.t. $f(\mathbf{x}, \mathbf{z}^j) \leq 0 \quad \forall j \in \{1, \dots, m\}.$
(SCP)

Solve a sampled convex program (SCP), where each scenario z^{j} is randomly sampled:

$$\min_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x})$$
s.t. $f(\mathbf{x}, \mathbf{z}^j) \le 0 \quad \forall j \in \{1, \dots, m\}.$
(SCP)

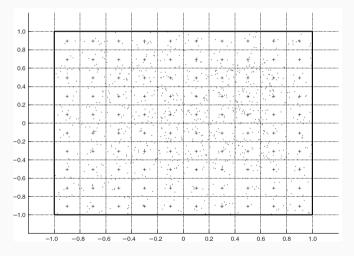
To ensure that the resulting solution satisfies $\mathbb{P}^*(f(\mathbf{x}, \tilde{\mathbf{z}}) \leq 0) \geq 1 - \epsilon$, with confidence $\geq 1 - \alpha$, the following must hold:

$$m \geq rac{\mathsf{dim}(\mathbf{x})}{\epsilon lpha} - 1,$$

This result was later tightened in Campi & Garatti (2008)

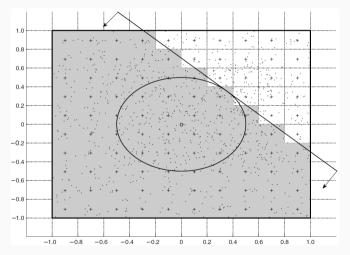
Method proposed in Yanıkoğlu & den Hertog (2013)

1) Divide uncertainty space into cells



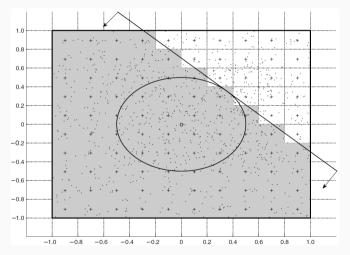
Method proposed in Yanıkoğlu & den Hertog (2013)

2) Solve robust counterpart with (ellipsoidal) uncertainty set



Method proposed in Yanıkoğlu & den Hertog (2013)

3) Compute probability guarantee with modified χ^2 test



Same toy problem as earlier, but now in k dimensions:

$$\begin{array}{l} \max_{\mathbf{x} \leq 1} \ \mathbf{e}^{\mathsf{T}} \mathbf{x} & (2) \\ \\ \tilde{\mathbf{z}}^{\mathsf{T}} \mathbf{x} \leq 1, \end{array} \tag{3} \end{array}$$

where:

- $\mathbf{x} \in \mathbb{R}^k$
- $\tilde{\mathbf{z}} \in [-1,1]^k$

Settings for numerical experiment

- Desired probability feasible $1 \epsilon = 0.95$
- Statistical confidence level $1 \alpha = 0.99$
- ROBIST settings:
 - ▶ $N_1 = N_2 = 500$
 - ► *i_{max}* = 500

Results: data and computation time

	Ν			Computation time (s)		
k	C&C	Y&dH	ROBIST	C&C	Y&dH	ROBIST
2	90	1,000	1,000	0.1	6	5
3	130	10,000	1,000	0.2	6	5
4	165	100,000	1,000	0.2	27	7
5	198	1,000,000	1,000	0.2	200	7
÷						
10	344	10 ¹¹	1,000	0.4	-	12

		Objective				Probability guarantee				
k	C&C	Y&dH	ROBIST		C&C	Y&dH	ROBIST			
2	1.19	1.20	1.32		0.950	0.969	0.951			
3	1.39	1.42	1.63		0.950	0.958	0.951			
4	1.57	1.67	1.83		0.950	0.952	0.951			
5	1.76	1.85	2.06		0.950	0.951	0.952			
:										
10	2.48	-	2.84		0.950	-	0.952			

	Objective				Probability guarantee				Out-of-sample probability			
k	C&C	Y&dH	ROBIST		C&C	Y&dH	ROBIST		C&C	Y&dH	ROBIST	
2	1.19	1.20	1.32	C	.950	0.969	0.951		0.981	0.985	0.968	
3	1.39	1.42	1.63	С	.950	0.958	0.951		0.977	0.985	0.964	
4	1.57	1.67	1.83	С	.950	0.952	0.951		0.975	0.983	0.966	
5	1.76	1.85	2.06	С	.950	0.951	0.952		0.973	0.983	0.961	
:												
10	2.48	-	2.84	C	.950	-	0.952		0.972	-	0.959	

Conclusion

• While optimization under uncertainty can be difficult, robustness analysis of a given solution is relatively easy

- While optimization under uncertainty can be difficult, robustness analysis of a given solution is relatively easy
- Our novel method offers many practical advantages over existing methods

- While optimization under uncertainty can be difficult, robustness analysis of a given solution is relatively easy
- Our novel method offers many practical advantages over existing methods
 - ► Simple & accessible

- While optimization under uncertainty can be difficult, robustness analysis of a given solution is relatively easy
- Our novel method offers many practical advantages over existing methods
 - ► Simple & accessible
 - Applicable to a wide variety of problems

- While optimization under uncertainty can be difficult, robustness analysis of a given solution is relatively easy
- Our novel method offers many practical advantages over existing methods
 - ► Simple & accessible
 - Applicable to a wide variety of problems
 - Computationally efficient

- While optimization under uncertainty can be difficult, robustness analysis of a given solution is relatively easy
- Our novel method offers many practical advantages over existing methods
 - ► Simple & accessible
 - Applicable to a wide variety of problems
 - Computationally efficient
- Numerical results have been very promising!

Thanks for listening!

If interested in the paper, please contact us at: j.s.starreveld@uva.nl

References

- Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. *Math. Opre. Res,* 23(4), 769–805.
- Bertsimas, D., Gupta, V., & Kallus, N. (2018). Data-driven robust optimization. *Mathematical Programming*, 167(2), 235–292.
- Bertsimas, D., & Sim, M. (2004). The price of robustness. *Operations research*, *52*(1), 35–53.
- Calafiore, G. C. (2016). Repetitive scenario design. *IEEE Transactions on Automatic Control*, 62(3), 1125–1137.

- Calafiore, G. C., & Campi, M. C. (2005). Uncertain convex programs: randomized solutions and confidence levels. *Mathematical Programming*, *102*(1), 25–46.
- Campi, M. C., & Garatti, S. (2008). The exact feasibility of randomized solutions of uncertain convex programs. *SIAM Journal on Optimization*, *19*(3), 1211–1230.
- Carè, A., Garatti, S., & Campi, M. C. (2014). Fast—fast algorithm for the scenario technique. *Operations Research*, *62*(3), 662–671.
- Charnes, A., & Cooper, W. (1959). Chance-constrained programming. *Management Science*, 6(1), 73–79.
- Garatti, S., Campi, M., et al. (2022). Complexity is an effective observable to tune early stopping in scenario optimization. *IEEE Transactions on Automatic Control*.

- Shapiro, A., & Nemirovski, A. (2005). On complexity of stochastic programming problems. *Continuous optimization: Current trends and modern applications*, 111–146.
- Vayanos, P., Kuhn, D., & Rustem, B. (2012). A constraint sampling approach for multi-stage robust optimization. *Automatica*, 48(3), 459–471.
- Yanıkoğlu, İ., & den Hertog, D. (2013). Safe approximations of ambiguous chance constraints using historical data. *INFORMS Journal on Computing*, *25*(4), 666–681.