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Introduction



Optimization under parametric uncertainty

min
x∈X

g(x)

s.t. f (x, z̃) ≤ 0,

where:

• x ∈ Rnx is the decision vector, defined on a closed convex feasible set X

• z̃ ∈ Rnz is an uncertain parameter vector

• g(x) and f (x, z̃) are scalar-valued functions that are convex in x

⇒ How to deal with uncertain constraint f (x, z̃) ≤ 0?
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Three main approaches

How to deal with uncertain constraint f (x, z̃) ≤ 0?

1. Stochastic Programming (Charnes & Cooper, 1959)

P(f (x, z̃) ≤ 0) ≥ 1− ϵ

2. Robust Optimization (Ben-Tal & Nemirovski, 1998)

sup
z∈U

f (x, z) ≤ 0

3. Scenario Optimization (Calafiore & Campi, 2005)

f (x, zj) ≤ 0 ∀j ∈ {1, . . . ,m}
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Practical limitations to stochastic programming approach

P(f (x, z̃) ≤ 0) ≥ 1− ϵ

• Assumes P is known

• Even when P is known, still generally intractable (Shapiro & Nemirovski, 2005)
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Practical limitations to robust optimization approach

sup
z∈U

f (x, z) ≤ 0

• Computational tractability of reformulation is highly dependent on f and U
▶ May lead to a huge increase in the number of additional variables and constraints
▶ If f is non-concave in z, exact reformulations are known only for specific U

• Can be difficult to determine appropriate shape and size of U
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Practical limitations to scenario optimization approach

f (x, zj) ≤ 0 ∀j ∈ {1, . . . ,m}

• Required number of (randomly sampled) scenarios m quickly becomes

prohibitively large for medium- and large-scale optimization problems
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Methodology



Illustrative Example
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Example: toy problem from Yanıkoğlu & den Hertog (2013)

max
x1,x2≤1

x1 + x2

s.t. z̃1x1 + z̃2x2 ≤ 1,

• Uncertain parameters z̃1 and z̃2 both uniformly distributed on [−1, 1]
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(−) min
x1, x2 ≤ 1︸ ︷︷ ︸

X

−(x1 + x2)︸ ︷︷ ︸
g(x)

s.t. z̃1x1 + z̃2x2 − 1︸ ︷︷ ︸
f (x,z̃)

≤ 0,
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Example: toy problem from Yanıkoğlu & den Hertog (2013)

max
x1,x2≤1

x1 + x2

s.t. z̃1x1 + z̃2x2 ≤ 1,

• Uncertain parameters z̃1 and z̃2 both uniformly distributed on [−1, 1]

• Nominal case:

▶ Expected parameter values (z̄1, z̄2) = (0, 0)
▶ Nominal (optimal) solution (x̄1, x̄2) = (1, 1)

⇒ How “robust” is this solution?
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Imagine we have access to N = 100 scenarios/realizations of (z̃1, z̃2)

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0
z 2

data
nominal scenario
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Analyze robustness of nominal solution (x̄1, x̄2) = (1, 1) using our data

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0
z 2

feasible scenarios
violated scenarios
nominal scenario
z1x1 + z2x2 1

12



Use data to estimate the probability that x̄ is feasible

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0

z 2

• We find that the uncertain constraint
is violated for 13

100 of our scenarios

▶ Empirical estimate of

P∗(z̃1x̄1 + z̃2x̄2 ≤ 1) = 0.87

• Derive statistical lower bound on
estimate (N = 100, α = 0.01)

⇒ Lower bound = 0.78

• While optimizing for a single scenario

(z̄1, z̄2) = (0, 0), the resulting solution

is likely to be feasible w.p. ≥ 0.78
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Obtaining a more robust solution

• Imagine we are not content with the robustness of our nominal solution (x̄1, x̄2)

▶ Feasible with probability ≥ 0.78 considered too risky

• We can add scenarios/constraints to our optimization problem

max
x1,x2≤1

x1 + x2

s.t. z̄1x1 + z̄2x2 ≤ 1, (nominal scenario)

z i1x1 + z i2x2 ≤ 1, (scenario i)

• Restricts the feasible region, and may lower the optimal objective value
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Which scenario(s) should be added?

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0
z 2

feasible scenarios
violated scenarios
nominal scenario
z1x1 + z2x2 1
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Pick scenario ẑ11 = (0.96, 0.60) and resolve problem with added constraint

⇒ x′ = (0.42, 1)

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0
z 2

feasible scenarios
violated scenarios
sampled scenarios
z1x′1 + z2x′2 1
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Analyze robustness of new solution x′

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0

z 2

• We find that the uncertain constraint
is violated for 3

100 of our scenarios

▶ Empirical estimate of

P∗(z̃1x̄1 + z̃2x̄2 ≤ 1) = 0.97

• Derive statistical lower bound on
estimate (N = 100, α = 0.01)

⇒ Lower bound = 0.93

• Probability guarantee: 0.78 → 0.93

• Objective value: 2.00 → 1.42
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Trade-off between objective value and robustness

• Can construct trade-off curve from obtained solutions
▶ Offers insight into “price of robustness” (Bertsimas & Sim, 2004)
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Deriving probability guarantee
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Problem setup

Uncertain convex program (UCP):

min
x∈X

g(x)

s.t. f (x, z̃) ≤ 0,
(UCP)

• We are interested in finding “robust” solutions to (UCP), i.e. solutions which are

likely to be feasible despite the uncertainty

• Assume that z̃ is a random variable with probability distribution P∗

• Given an tolerable probability of constraint violation ϵ, we would like the following

“probability guarantee” to hold:

P∗(f (x, z̃) ≤ 0) ≥ 1− ϵ.
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Data + statistical testing to provide probability guarantee

• Assume we do not know P∗, but have access to N i.i.d. data points

D =
{
z1, . . . , zN

}
that originate from P∗

• Given such data and some fixed solution x̄, we can use statistical testing to state

with confidence ≥ 1− α that:

P∗(f (x̄, z̃) ≤ 0) ≥ γ̄

21
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Our novel method for deriving feasibility “certificate” γ̄

• Given some fixed solution x̄ and data set D =
{
z1, . . . , zN

}

• For each scenario zi ∈ DN , we compute whether f (x̄, zi ) ≤ 0 is satisfied

▶ Gives an empirical estimate p1 :=
1
N

N∑
i=1

1[f (x̄,zi )≤0]

• Construct a (1− α)-statistical confidence set Qϕ around empirical estimate p1

using the modified chi-squared distance

Qϕ(p1,N, α) :=

®
q1 ∈ R

∣∣∣∣∣ q1 ≥ 0,
(q1 − p1)

2

p1
+

(q1 − p1)
2

1− p1
≤

χ2
1,1−α

N

´
. (1)

• Determine certificate γ̄ by computing γ̄ := min
q1∈Qϕ

q1

22
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Key elements in our novel method

• P∗(z̃ ∈ U) is an underestimation of P∗(f (x, z̃) ≤ 0)

• Because we consider x̄ fixed and provide an “a posteriori” probability guarantee,
the statistical test is on the univariate random variable f (x̄, z̃)
▶ Two classes:

i. f (x̄, z̃) ≤ 0

ii. f (x̄, z̃) > 0

⇒ Only 1 degree of freedom in statistical test

⇒ Sharp probability guarantees

⇒ Independent of dimensions of x and z
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Broad overview of our solution approach (ROBIST)

• Access to some sufficiently large data set D
▶ Split into training data Dtrain

N1
and testing data Dtest

N2

1. Generation procedure

▶ Sample a (small) subset of scenarios S from Dtrain
N1

to generate solutions

x := argminx∈X {g(x) | f (x, z) ≤ 0, ∀z ∈ S} (SCPS)

2. Evaluation procedure

▶ Use Dtest
N2

to analyze the robustness of the generated solutions

⇒ Can we combine these two procedures in an iterative heuristic search algorithm?

24
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The algorithm

Input:

• Two data sets Dtrain
N1

and Dtest
N2

* Data sets are independent and observations in Dtest
N2

are i.i.d.

• Acceptable probability of constraint violation ϵ

• Statistical confidence level α

• Stopping criteria (time limit and/or maximum number of iterations)
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Input:

• Two data sets Dtrain
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and Dtest
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* Data sets are independent and observations in Dtest
N2

are i.i.d.

• Acceptable probability of constraint violation ϵ

• Statistical confidence level α

• Stopping criteria (time limit and/or maximum number of iterations)

Actions (at each iteration i):

• Solve (SCPSi
) to obtain xi , where Si ⊆ Dtrain

N1

• Evaluate robustness of xi using all scenarios in Dtrain
N1

• If insufficiently robust, add a scenario to Si , else, remove a scenario from Si

Output:

• Use Dtest
N2

to determine best found solution xi∗ 25



Numerical Experiments



Applications considered in the paper

1. Toy problem

▶ Comparison with Calafiore & Campi (2005) and Yanıkoğlu & den Hertog (2013)

2. Portfolio management problem

▶ Comparison with robust optimization approach, the data-driven uncertainty sets

presented in Bertsimas et al. (2018)

3. Weighted distribution problem

▶ Comparison with scenario optimization approach, the methods of Calafiore & Campi

(2005); Carè et al. (2014); Calafiore (2016) and Garatti et al. (2022)

4. Two-stage adaptive lot-sizing problem

▶ Comparison with Vayanos et al. (2012)

26



Application I: Toy Problem

Comparison with Calafiore & Campi (2005) and Yanıkoğlu & den Hertog (2013)
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Method proposed in Calafiore & Campi (2005)

Solve a sampled convex program (SCP), where each scenario zj is randomly sampled:

min
x∈X

g(x)

s.t. f (x, zj) ≤ 0 ∀j ∈ {1, . . . ,m}.
(SCP)
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Method proposed in Calafiore & Campi (2005)

Solve a sampled convex program (SCP), where each scenario zj is randomly sampled:

min
x∈X

g(x)

s.t. f (x, zj) ≤ 0 ∀j ∈ {1, . . . ,m}.
(SCP)

To ensure that the resulting solution satisfies P∗(f (x, z̃) ≤ 0) ≥ 1− ϵ,

with confidence ≥ 1− α, the following must hold:

m ≥ dim(x)

ϵα
− 1,

This result was later tightened in Campi & Garatti (2008) 28



Method proposed in Yanıkoğlu & den Hertog (2013)

1) Divide uncertainty space into cells
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Method proposed in Yanıkoğlu & den Hertog (2013)

2) Solve robust counterpart with (ellipsoidal) uncertainty set
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Method proposed in Yanıkoğlu & den Hertog (2013)

3) Compute probability guarantee with modified χ2 test
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Toy Problem

Same toy problem as earlier, but now in k dimensions:

max
x≤1

e⊺x (2)

z̃⊺x ≤ 1, (3)

where:

• x ∈ Rk

• z̃ ∈ [−1, 1]k
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Settings for numerical experiment

• Desired probability feasible 1− ϵ = 0.95

• Statistical confidence level 1− α = 0.99

• ROBIST settings:

▶ N1 = N2 = 500
▶ imax = 500

31



Results: data and computation time

N Computation time (s)

k C&C Y&dH ROBIST C&C Y&dH ROBIST

2 90 1,000 1,000 0.1 6 5

3 130 10,000 1,000 0.2 6 5

4 165 100,000 1,000 0.2 27 7

5 198 1,000,000 1,000 0.2 200 7
...

10 344 1011 1,000 0.4 - 12
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Results: quality of solutions

Objective Probability guarantee

k C&C Y&dH ROBIST C&C Y&dH ROBIST

2 1.19 1.20 1.32 0.950 0.969 0.951

3 1.39 1.42 1.63 0.950 0.958 0.951

4 1.57 1.67 1.83 0.950 0.952 0.951

5 1.76 1.85 2.06 0.950 0.951 0.952
...

10 2.48 - 2.84 0.950 - 0.952
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Results: quality of solutions

Objective Probability guarantee Out-of-sample probability

k C&C Y&dH ROBIST C&C Y&dH ROBIST C&C Y&dH ROBIST

2 1.19 1.20 1.32 0.950 0.969 0.951 0.981 0.985 0.968

3 1.39 1.42 1.63 0.950 0.958 0.951 0.977 0.985 0.964

4 1.57 1.67 1.83 0.950 0.952 0.951 0.975 0.983 0.966

5 1.76 1.85 2.06 0.950 0.951 0.952 0.973 0.983 0.961
...

10 2.48 - 2.84 0.950 - 0.952 0.972 - 0.959
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Conclusion



Main takeaways

• While optimization under uncertainty can be difficult, robustness analysis of a

given solution is relatively easy

• Our novel method offers many practical advantages over existing methods

▶ Simple & accessible

▶ Applicable to a wide variety of problems

▶ Computationally efficient

• Numerical results have been very promising!
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Thanks for listening!

If interested in the paper, please contact us at: j.s.starreveld@uva.nl 35
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